NCERT Solutions Class 9th Maths Chapter – 2 Polynomials
Textbook | NCERT |
Class | 9th |
Subject | Mathematics |
Chapter | 2nd |
Chapter Name | Polynomials |
Category | Class 9th Mathematics |
Medium | English |
Source | Last Doubt |
NCERT Solutions Class 9th Maths Chapter – 2 Polynomials Exercise – 2.4 In This Chapter We Will Learn About Polynomials, Remainder theorem, Factor theorem, Terms, Coefficient, Zero Polynomials, Monomials, Binomials, Trinomials, Linear polynomials, Quadratic polynomials, Cubic polynomials, Zero of the polynomials, By splitting the middle term, Algebraic identities with Class 9th Maths Chapter – 2 Polynomials Exercise – 2.4.
NCERT Solutions Class 9th Maths Chapter – 2 Polynomials
Chapter – 2
Polynomials
Exercise – 2.4
Question 1. Use suitable identities to find the following products:
(i) (x + 4) (x + 10) Solution – We have, (x+ 4) (x + 10)
Using identity, (x+ a) (x+ b) = x2 + (a + b)x+ ab
We have, (x + 4) (x + 10)
= x2+(4 + 10) x + (4 x 10)
= x2 + 14x + 40 (ii) (x+8) (x -10) Solution – We have, (x+ 8) (x -10)
Using identity, (x + a) (x + b) = x2 + (a + b)x + ab
We have, (x + 8) (x – 10)
= x2 + [8 + (-10)] x + (8) (- 10)
= x2 – 2x – 80 (iii) (3x + 4) (3x – 5) Solution – We have, (3x + 4) (3x – 5)
Using identity, (x + a) (x + b) = x2 + (a + b) x + ab
We have, (3x + 4) (3x – 5)
= (3x)2 + (4 – 5) x + (4) (- 5)
= 9x2 – x – 20 (iv) (y2 3/2) (y2– 3/2) Solution – We have, (y2+ 3/2) (y2– 3/2)
Using the identity, (x+y)(x–y) = x2–y 2
We get, (y2 + 3/2) (y2 – 3/2)
= (y2)2 – (3/2)2
= y4 – 9/4 (v) (3 – 2x) (3 + 2x)
Solution – We have, (3 – 2x) (3 + 2x)
Using identity, (x + y) (x – y) = x2 – y2
(3 – 2x) (3 + 2x)
= (3)2 – (2x)2
= 9 – 4x2 |
Question 2. Evaluate the following products without multiplying directly:
(i) 103 x 107
Solution – We have, 103 x 107
[Using (x + a)(x + b) = x2 + (a + b)x + ab]
= (100 + 3) (100 + 7)
= ( 100)2 + (3 + 7) (100) + (3 x 7)
= 10000 + (10) x 100 + 21
= 10000 + 1000 + 21
= 11021 (ii) 95 x 96
Solution – We have, 95 x 96
[Using (x + a)(x + b) = x2 + (a + b)x + ab]
= (100 – 5) (100 – 4)
= ( 100)2 + (- 5) + (- 4) 100 + (- 5) (- 4)
= 10000 – 500 – 400 + 20
= 10020 – 900
= 9120 (iii) 104 x 96
Solution – We have 104 x 96
[Using (a + b)(a -b) = a2– b2]
= (100 + 4) (100 – 4)
= (100)2 – 42
= 10000 – 16
= 9984 |
Question 3. Factorise the following using appropriate identities:
(i) 9x2 + 6xy + y2 Solution – We have, 9x2 + 6xy + y2
[Using a2 + 2ab + b2 = (a + b)2]
= (3x)2 + 2(3x) (y) + (y)2
= (3x + y)2
= (3x + y) (3x + y) (ii) 4y2 – 4y + 1
Solution – We have, 4y2 – 4y + 12
[Using a2 – 2ab + b2 = (a- b)2]
= (2y)2 + 2(2y)(1) + (1)2
= (2y -1)2
= (2y – 1) (2y – 1) (iii) x2 – y2 / 100
Solution – We have, x2 – y2/100
[Using identity, x2 – y2 = (x – y) (x + y)]
= x2–y2/100
= x2–(y/10)2
= (x–y/10) (x+y/10) |
Question 4. Expand each of the following, using suitable identity
(i) (x+2y+ 4z)2 Solution – We know that,
[Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
(x + 2y + 4z)2
= x2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz (ii) (2x – y + z)2
Solution – (2x – y + z)2
= (2x)2 + (- y)2 + z2 + 2(2x)(- y) + 2(- y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4xz (iii) (- 2x + 3y + 2z)2
Solution – (- 2x + 3y + 2z)2
= (- 2x)2 + (3y)2 + (2z)2 + 2(- 2x)(3y) + 2(3y)(2z) + 2(2z)(- 2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz (iv) (3a -7b – c)z
Solution – (3a -7b- c)2
= (3a)2 + (- 7b)2 + (- c)2 + 2(3a)(- 7b) + 2(- 7b)(- c) + 2(- c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac (v) (- 2x + 5y – 3z)2
Solution – (- 2x + 5y- 3z)2
= (- 2x)2 + (5y)2 + (- 3z)2 + 2(- 2x)(5y) + 2(5y)(- 3z) + 2(- 3z)(- 2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12xz (vi) [1/4a –1/4b + 1] 2
Solution
|
Question 5. Factories:
(i) 4 x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz Solution – 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (- 4z)2 + 2(2x)(3y) + 2(3y)(- 4z) + 2(- 4z)(2x)
= (2x + 3y – 4z)2
= (2x + 3y + 4z) (2x + 3y – 4z) (ii) 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
Solution – 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
= (- √2x)2 + (y)2 + (2 √2z)2y + 2(- √2x)(y) + 2(y) (2√2z) + 2(2√2z)(- √2x)
= (- √2x + y + 2 √2z)2
= (- √2x + y + 2 √2z) (- √2x + y + 2 √2z) |
Question 6. Write the following cubes in expanded form: (i) (2x+1)3
Solution – Using identity,(x+y)3 = x3+y3+3xy(x+y)
(2x+1)3
= (2x)3+13+(3×2x×1)(2x+1)
= 8x3+1+6x(2x+1)
= 8x3+12x2+6x+1 (ii) (2a−3b)3 Solution – Using identity,(x–y)3 = x3–y3–3xy(x–y)
(2a−3b)3
= (2a)3−(3b)3–(3×2a×3b)(2a–3b)
= 8a3–27b3–18ab(2a–3b)
= 8a3–27b3–36a2b+54ab2 (iii) ((3/2)x+1)3 Solution – Using identity,(x+y)3 = x3+y3+3xy(x+y)
((3/2)x+1)3
= ((3/2)x)3 + 13+(3×(3/2)x×1) ((3/2)x +1)
= ((27/8)x)3 + 1 + (9/2)x (3/2)x + 1)
= ((27/8)x)3 + 1 + (27/8)x)2 + (9/2)x
= ((27/8)x)3 + (27/8)x)2 + (9/2)x + 1 (iv) (x−(2/3)y)3 Solution – Using identity, (x –y)3 = x3–y3–3xy(x–y)
(x−(2/3)y)3
= (x)3 – (2/3)y)3 – (3×x×2/3y) (x-2/3y)
= (x)3 – (8/27)y)3 – 2xy (x-2/3y)
= (x)3 – (8/27)y)3 – 2x2y + 4/3xy2 |
Question 7. Evaluate the following using suitable identities:
(i) (99)3 Solution – We have, 99 = (100 -1)
= 993 = (100 – 1)3 [Using (a – b)3 = a3 – b3 – 3ab (a – b)]
= (100)3 – 13 – 3(100)(1)(100 -1)
= 1000000 – 1 – 300(100 – 1)
= 1000000 -1 – 30000 + 300
= 1000300 – 30001
= 970299 (ii) (102)3
Solution – We have, 102 =100 + 2
= 1023 = (100 + 2)3 [Using (a + b)3 = a3 + b3 + 3ab (a + b)]
= (100)3 + (2)3 + 3(100)(2)(100 + 2)
= 1000000 + 8 + 600(100 + 2)
= 1000000 + 8 + 60000 + 1200
= 1061208 (iii) (998)3
Solution – We have, 998 = 1000 – 2
= (998)3 = (1000-2)3 [Using (a – b)3 = a3 – b3 – 3ab (a – b)]
= (1000)3– (2)3 – 3(1000)(2)(1000 – 2)
= 1000000000 – 8 – 6000(1000 – 2)
= 1000000000 – 8 – 6000000 + 12000
= 994011992 |
Question 8.Factorise each of the following:
(i) 8a3 +b3 + 12a2b+6ab2 Solution – 8a3 +b3 +12a2b+6ab2
= (2a)3 + (b)3 + 6ab(2a + b)
= (2a)3 + (b)3 + 3(2a)(b)(2a + b)
= (2 a + b)3
[Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (2a + b)(2a + b)(2a + b) (ii) 8a3 -b3-12a2b+6ab2
Solution – 8a3 – b3 – 12o2b + 6ab2
= (2a)3 – (b)3 – 3(2a)(b)(2a – b)
= (2a – b)3
[Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (2a – b) (2a – b) (2a – b) (iii) 27-125a3 -135a+225a2
Solution – 27 – 125a3 – 135a + 225a2
= (3)3 – (5a)3 – 3(3)(5a)(3 – 5a)
= (3 – 5a)3
[Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (3 – 5a) (3 – 5a) (3 – 5a) (iv) 64a3 -27b3 -144a2b + 108ab2 Solution – 64a3 -27b3 -144a2b + 108ab2
= (4a)3 – (3b)3 – 3(4a)(3b)(4a – 3b)
= (4a – 3b)3
[Using a3 – b3 – 3 ab(a – b) = (a – b)3]
= (4a – 3b)(4a – 3b)(4a – 3b) (v) 27p3–(1/216)−(9/2) p2+(1/4)p Solution – The expression, 27p3–(1/216)−(9/2) p2+(1/4)p can be written as
(3p)3–(1/6)3−(9/2) p2+(1/4)p = (3p)3–(1/6)3−3(3p)(1/6)(3p – 1/6)
Using (x – y)3 = x3 – y3 – 3xy (x – y)
27p3–(1/216)−(9/2) p2+(1/4)p = (3p)3–(1/6)3−3(3p)(1/6)(3p – 1/6)
Taking x = 3p and y = 1/6
= (3p–1/6)3
= (3p–1/6)(3p–1/6)(3p–1/6) |
Question 9. Verify
(i) x3 + y3 = (x + y)-(x2 – xy + y2)
Solution – (x + y)3 = x3 + y3 + 3xy(x + y)
⇒ (x + y)3 – 3(x + y)(xy) = x3 + y3
⇒ (x + y)[(x + y)2-3xy] = x3 + y3
⇒ (x + y)(x2 + y2 – xy) = x3 + y3
Hence, verified. (ii) x3 – y3 = (x – y) (x2 + xy + y2)
Solution – (x – y)3 = x3 – y3 – 3xy(x – y)
⇒ (x – y)3 + 3xy(x – y) = x3 – y3
⇒ (x – y)[(x – y)2 + 3xy)] = x3 – y3
⇒ (x – y)(x2 + y2 + xy) = x3 – y3
Hence, verified. |
Question 10. Factorise each of the following:
(i) 27y3 + 125z3
[Hint: See question 9.] Solution – We know that,
x3 + y3 = (x + y)(x2 – xy + y2)
We have, 27y3 + 125z3
= (3y)3 + (5z)3
= (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 – 15yz + 25z2) (ii) 64m3 – 343n3
Solution – We know that,
x3 – y3 = (x – y)(x2 + xy + y2)
We have, 64m3 – 343n3
= (4m)3 – (7n)3
= (4m – 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)(16m2 + 28mn + 49n2) |
Question 11. Factories: 27x3 +y3 +z3 -9xyz Solution – We know that,
Using the identity, x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
We have, 27x3 + y3 + z3 – 9xyz
= (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z)[(3x)3 + y3 + z3 – (3x × y) – (y × 2) – (z × 3x)]
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3zx) |
Question 12. Verify that x3 +y3 +z3 – 3xyz = 1/2 (x + y+z)[(x-y)2 + (y – z)2 +(z – x)2] Solution – R.H.S
= 1/2(x + y + z)[(x – y)2+(y – z)2+(z – x)2]
= 1/2 (x + y + 2)[(x2 + y2 – 2xy) + (y2 + z2 – 2yz) + (z2 + x2 – 2zx)]
= 1/2 (x + y + 2)(x2 + y2 + y2 + z2 + z2 + x2 – 2xy – 2yz – 2zx)
= 1/2 (x + y + z)[2(x2 + y2 + z2 – xy – yz – zx)]
= 2 x 1/2 x (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= x3 + y3 + z3 – 3xyz = L.H.S.
Hence, verified. |
Question 13. If x + y + z = 0, show that x3 + y3 + z3 = 3 xyz. Solution – Since, x + y + z = 0
⇒ x + y = -z (x + y)3 = (-z)3
⇒ x3 + y3 + 3xy(x + y) = -z3
⇒ x3 + y3 + 3xy(-z) = -z3 [∵ x + y = -z]
⇒ x3 + y3 – 3xyz = -z3
⇒ x3 + y3 + z3 = 3xyz
Hence, if x + y + z = 0, then
x3 + y3 + z3 = 3xyz |
Question 14. Without actually calculating the cubes, find the value of each of the following:
(i) (- 12)3 + (7)3 + (5)3 Solution – We have, (-12)3 + (7)3 + (5)3
Let x = -12, y = 7 and z = 5.
We know that if x + y + z = 0, then, x3 + y3 + z3 = 3xyz
∴ (-12)3 + (7)3 + (5)3
= 3[(-12)(7)(5)]
= 3[-420]
= -1260 (ii) (28)3 + (- 15)3 + (- 13)3
Solution – We have, (28)3 + (-15)3 + (-13)3
Then, x + y + z = 28 – 15 – 13 = 0
We know that if x + y + z = 0, then x3 + y3 + z3 = 3xyz
∴ (28)3 + (-15)3 + (-13)3
= 3(28)(-15)(-13)
= 3(5460)
= 16380 |
Question 15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area: 25a2 – 35a + 12 Solution – Area of a rectangle = (Length) x (Breadth)
We have, 25a2 – 35a + 12
= 25a2 – 20a – 15a + 12
= 5a(5a – 4) – 3(5a – 4)
= (5a – 4)(5a – 3)
Thus, the possible length and breadth are (5a – 3) and (5a – 4). (ii) Area: 35y2 + 13y – 12
Solution – We have, 35y2+ 13y -12
= 35y2 + 28y – 15y -12
= 7y(5y + 4) – 3(5y + 4)
= (5 y + 4)(7y – 3)
Thus, the possible length and breadth are (7y – 3) and (5y + 4). |
Question 16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume 3x2 – 12x Solution – Volume of a cuboid = (Length) × (Breadth) × (Height)
We have, 3x2 – 12x = 3(x2 – 4x)
= 3 x x x (x – 4)
∴ The possible dimensions of the cuboid are 3, x and (x – 4). (ii) Volume 12ky2 + 8ky – 20k
Solution – We have, 12ky2 + 8ky – 20k
= 4[3ky2 + 2ky – 5k] = 4[k(3y2 + 2y – 5)]
= 4 x k x (3y2 + 2y – 5)
= 4k[3y2 – 3y + 5y – 5]
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5) x (y – 1)]
= 4k x (3y + 5) x (y – 1)
Thus, the possible dimensions of the cuboid are 4k, (3y + 5) and (y -1). |
You Can Join Our Social Account