NCERT Solutions Class 11th Maths Chapter – 15 – Statistics Exercise 15.2

NCERT Solutions Class 11th Maths Chapter – 15 – Statistics Exercise 15.2

TextbookNCERT
classClass – 11th
SubjectMathematics
ChapterChapter – 15
Chapter NameStatistics
gradeClass 11th Maths solution 
Medium English
Sourcelast doubt

NCERT Solutions Class 11th Maths Chapter – 15 – Statistics Exercise 15.2

?Chapter – 15?

✍Statistics✍

?Exercise 15.2?

1. Find the mean and variance for each of the data in Exercise 1 to 5.
1. 6, 7, 10, 12, 13, 4, 8, 12

?‍♂️Solution:

So, x̅ = (6 + 7 + 10 + 12 + 13 + 4 + 8 + 12)/8
= 72/8
= 9
Let us make the table of the given data and append other columns after calculations.

XiDeviations from mean(xi – x̅)(xi – x̅)2
66 – 9 = -39
77 – 9 = -24
1010 – 9 = 11
1212 – 9 = 39
1313 – 9 = 416
44 – 9 = – 525
88 – 9 = – 11
1212 – 9 = 39
74

We know that Variance,

 

(xi )2 / n   

= 74/8

= 9.25

2. First n natural numbers

?‍♂️Solution: First n natural numbers: 1, 2, 3, ….., n

Mean = 1+2+3+….+ 1/n × n(n+1)/2

= n+1/2 ….{sum of first natural numbers n(n+1)/2}

x 2 i = 1 2 +2 2 +3 2 +….+n 2

= n ( n + 1) (2n + 1) / 6

Variance = (xi )2 / n   = 1/n2n ∑x2i – (∑xi)2

= 1/n[n × n (n + 1) (2n + 1)/6 –  n2(n+1)2/4]

= 1/12[2(n+1)(2n+1) – 3(n+1)2]

= n+1/12 [2(2n+1)-3(n+1)]

= n+1/12[4n+2-3n-3]

= (n+1)(n-1)/12

= n2– 1/12

3. First 10 multiples of 3

?‍♂️Solution:

 

So, x̅ = (3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30)/10
= 165/10
= 16.5
Let us make the table of the data and append other columns after calculations

XiDeviations from mean(xi – x̅)(xi – x̅)2
33 – 16.5 = -13.5182.25
66 – 16.5 = -10.5110.25
99 – 16.5 = -7.556.25
1212 – 16.5 = -4.520.25
1515 – 16.5 = -1.52.25
1818 – 16.5 = 1.52.25
2121 – 16.5 = – 4.520.25
2424 – 16.5 = 7.556.25
2727 – 16.5 = 10.5110.25
3030 – 16.5 = 13.5182.25
742.5

Then, Variance

 

σ2= h2/h2[n ∑y2– (∑yi)2]

= 9/100[10×85-25]

= 9/100[850-25]

= 9×825/100

= 7425/100

= 74.25

अतः माध्य = 16.5, प्रसरण = 74.25

4.

xi6101418242830
fi24712843

?‍♂️Solution: Let us make the table of the given data and append other columns after calculations.

XififixiDeviations from mean(xi – x̅)(xi – x̅)2fi(xi – x̅)2
62126 – 19 = 13169338
1044010 – 19 = -981324
1479814 – 19 = -525175
181221618 – 19 = -1112
24819224 – 19 = 525200
28411228 – 19 = 981324
3039030 – 19 = 11121363
N = 407601736

 

Mean = = 760/40 = 19

Variance = σ2 = fi(xi)2/N

= 1736/40

= 43.3

5.

c92939798102104109
fi3232633

?‍♂️Solution: Let us make the table of the given data and append other columns after calculations.

XififixiDeviations from mean(xi – x̅)(xi – x̅)2fi(xi – x̅)2
92327692 – 100 = -864192
93218693 – 100 = -74998
97329197 – 100 = -3927
98219698 – 100 = -248
1026612102 – 100 = 2424
1043312104 – 100 = 41648
1093327109 – 100 = 981243
N = 222200640

 

Mean = = A + yi/n 

= 98 + 44/22

= 98 + 2 

= 100

Variance σ2 = 1/N2[fiyi(fiyi)2]

= 1/(22)2[22×728 – 44 × 44]

= 1/22[728-88]

= 640/22

= 320/11

= 29.09

6. Find the mean and standard deviation using short-cut method.

xi606162636465666768
fi21122925121045

?‍♂️Solution: Let the assumed mean A = 64. Here h = 1

We obtain the following table from the given data.

Let the assumed mean A = 64

and yi = xi – 64

XiFrequency fiYi = (xi – A)/hYi2fiyifiyi2
602-416-832
611-39-39
6212-24-2448
6329-11-2929
64250000
6512111212
6610242040
674391236
6854162080
0286

Mean, = A + fiyi/N

= 64 + 0 

= 64

Then, variance,

σ2 = 1/N2[fiyi(fiyi)2]

= 1/(100)2[100×286 – 0]

= 286/100

= 2.86

 

 

Therefore, Standard variance = 2.886
= 1.691
Mean = 64 and Standard variance = 1.691

7. Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

Classes0 – 3030 – 6060 – 9090 – 120120 – 150150 – 180180 – 210
Frequencies23510352

?‍♂️Solution: Let us make the table of the given data and append other columns after calculations.

the assumed mean A = 105, class interval h = 30

yi = xi – A / h = xi – 10 /30

ClassesFrequency fiMid – pointsxifixi(xi – x̅)(xi – x̅)2fi(xi – x̅)2
0 – 3021530-92846416928
30 – 60345135-62384411532
60 – 90575375-3210245120
90 – 120101051050-2440
120 – 1503135405287842352
150 – 180516582558336416820
180 – 210219539088774415488
N = 30321068280

 

Mean = A + (fiyi/N) x h

= 105+2/30×30

= 107

Variance σ2= h2/h2[n ∑fiy2(∑fiyi)2]

= 30×30/30×30[30×76-22]

= 2280 − 4

= 2276

8.

Classes0 – 1010 – 2020 – 3030 – 4040 –50
Frequencies5815166

?‍♂️Solution: Let us make the table of the given data and append other columns after calculations.

yi = xi – A / h = xi – 25 /10 

ClassesFrequency fiMid – pointsxifixi(xi – x̅)(xi – x̅)2fi(xi – x̅)2
0 – 105525-224842420
10 – 20815120-121441152
20 – 301525375-2460
30 – 4016355608641024
40 –50645270183241944
N = 5013506600

 

Mean = A + (fiyi/N) x h

= 25+(10/50)×10

= 25 + 2

= 27

Variance σ2= h2/h2[n fiy2– (∑fiyi)2]

= 100/2500[50×68-100]

= 50/25[68-2]

= 2 × 66 

= 132

9. Find the mean, variance and standard deviation using short-cut method

Height in cms70 – 7575 – 8080 – 8585 – 9090 – 9595 – 100100 – 105105 – 110110 – 115
Frequencies3477159663

?‍♂️Solution: Let the assumed mean, A = 92.5 and h = 5

Let us make the table of the given data and append other columns after calculations.

Height (class)Number of children Frequency fiMidpointXiYi = (xi – A)/hYi2fiyifiyi2
70 – 75372.5-416-1248
75 – 80477.5-39-1236
80 – 85782.5-24-1428
85 – 90787.5-11-77
90 – 951592.50000
95 – 100997.51199
100 – 1056102.5241224
105 – 1106107.5391854
110 – 1153112.54161248
N = 606254

Mean, = A + (fiyi/N) x h

= 9.25+6/60×5

= 92.5 + 0.5 

= 93

Variance,

σ2= h2/h2[n fiy2– (∑fiyi)2]

= 25/3600[60×254-36]

= 12/144[5×254-3]

= 112[1270-3]

= 1267/12

= 105.58

Standard Deviation, =

σ = 105.58

= 10.28

10. The diameters of circles (in mm) drawn in a design are given below:

Diameters33 – 3637 – 4041 – 4445 – 4849 – 52
No. of circles1517212225

Calculate the standard deviation and mean diameter of the circles.

[Hint first make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5 – 48.5, 48.5 – 52.5 and then proceed.]

?‍♂️Solution: Let the assumed mean, A = 42.5 and h = 4

Let us make the table of the given data and append other columns after calculations.

yi = xi – 42.5 /4

Height (class)Number of children(Frequency fi)MidpointXiYi = (xi – A)/hYi2fiyifiyi2
32.5 – 36.51534.5-24-3060
36.5 – 40.51738.5-11-1717
40.5 – 44.52142.50000
44.5 – 48.52246.5112222
48.5 – 52.52550.52450100
N = 10025199

Mean, = A + (fiyi/N) x h

= 42.5+25100×4

= 42.5 + 1

= 43.5

Variance σ2= h2/h2[n fiy2– (∑fiyi)2]

= 16/(100)2[100×199-(25)2]

= 16×25/100×100[4×199-25]

= 1/25[796-25]

= 771/25

= 30.84

Standard Deviation  σ = 30.48 = 5.56