NCERT Solutions Class 11th Maths Chapter – 15 – Statistics Exercise 15.2
Textbook | NCERT |
class | Class – 11th |
Subject | Mathematics |
Chapter | Chapter – 15 |
Chapter Name | Statistics |
grade | Class 11th Maths solution |
Medium | English |
Source | last doubt |
NCERT Solutions Class 11th Maths Chapter – 15 – Statistics Exercise 15.2
?Chapter – 15?
✍Statistics✍
?Exercise 15.2?
1. Find the mean and variance for each of the data in Exercise 1 to 5.
1. 6, 7, 10, 12, 13, 4, 8, 12
?♂️Solution:
So, x̅ = (6 + 7 + 10 + 12 + 13 + 4 + 8 + 12)/8
= 72/8
= 9
Let us make the table of the given data and append other columns after calculations.
Xi | Deviations from mean(xi – x̅) | (xi – x̅)2 |
6 | 6 – 9 = -3 | 9 |
7 | 7 – 9 = -2 | 4 |
10 | 10 – 9 = 1 | 1 |
12 | 12 – 9 = 3 | 9 |
13 | 13 – 9 = 4 | 16 |
4 | 4 – 9 = – 5 | 25 |
8 | 8 – 9 = – 1 | 1 |
12 | 12 – 9 = 3 | 9 |
74 |
We know that Variance,
∑ (xi – x̅ )2 / n
= 74/8
= 9.25
2. First n natural numbers
?♂️Solution: First n natural numbers: 1, 2, 3, ….., n
Mean x̅ = 1+2+3+….+ 1/n × n(n+1)/2
= n+1/2 ….{sum of first natural numbers n(n+1)/2}
∑ x 2 i = 1 2 +2 2 +3 2 +….+n 2
= n ( n + 1) (2n + 1) / 6
Variance = ∑ (xi – x̅ )2 / n = 1/n2[ n ∑x2i – (∑xi)2
= 1/n[n × n (n + 1) (2n + 1)/6 – n2(n+1)2/4]
= 1/12[2(n+1)(2n+1) – 3(n+1)2]
= n+1/12 [2(2n+1)-3(n+1)]
= n+1/12[4n+2-3n-3]
= (n+1)(n-1)/12
= n2– 1/12
3. First 10 multiples of 3
?♂️Solution:
So, x̅ = (3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30)/10
= 165/10
= 16.5
Let us make the table of the data and append other columns after calculations
Xi | Deviations from mean(xi – x̅) | (xi – x̅)2 |
3 | 3 – 16.5 = -13.5 | 182.25 |
6 | 6 – 16.5 = -10.5 | 110.25 |
9 | 9 – 16.5 = -7.5 | 56.25 |
12 | 12 – 16.5 = -4.5 | 20.25 |
15 | 15 – 16.5 = -1.5 | 2.25 |
18 | 18 – 16.5 = 1.5 | 2.25 |
21 | 21 – 16.5 = – 4.5 | 20.25 |
24 | 24 – 16.5 = 7.5 | 56.25 |
27 | 27 – 16.5 = 10.5 | 110.25 |
30 | 30 – 16.5 = 13.5 | 182.25 |
742.5 |
Then, Variance
σ2= h2/h2[n ∑y2i – (∑yi)2]
= 9/100[10×85-25]
= 9/100[850-25]
= 9×825/100
= 7425/100
= 74.25
अतः माध्य = 16.5, प्रसरण = 74.25
4.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
?♂️Solution: Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | Deviations from mean(xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
6 | 2 | 12 | 6 – 19 = 13 | 169 | 338 |
10 | 4 | 40 | 10 – 19 = -9 | 81 | 324 |
14 | 7 | 98 | 14 – 19 = -5 | 25 | 175 |
18 | 12 | 216 | 18 – 19 = -1 | 1 | 12 |
24 | 8 | 192 | 24 – 19 = 5 | 25 | 200 |
28 | 4 | 112 | 28 – 19 = 9 | 81 | 324 |
30 | 3 | 90 | 30 – 19 = 11 | 121 | 363 |
N = 40 | 760 | 1736 |
Mean = x̅ = 760/40 = 19
Variance = σ2 = ∑fi(xi – x̅)2/N
= 1736/40
= 43.3
5.
c | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
?♂️Solution: Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | Deviations from mean(xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
92 | 3 | 276 | 92 – 100 = -8 | 64 | 192 |
93 | 2 | 186 | 93 – 100 = -7 | 49 | 98 |
97 | 3 | 291 | 97 – 100 = -3 | 9 | 27 |
98 | 2 | 196 | 98 – 100 = -2 | 4 | 8 |
102 | 6 | 612 | 102 – 100 = 2 | 4 | 24 |
104 | 3 | 312 | 104 – 100 = 4 | 16 | 48 |
109 | 3 | 327 | 109 – 100 = 9 | 81 | 243 |
N = 22 | 2200 | 640 |
Mean = x̅ = A + ∑yi/n
= 98 + 44/22
= 98 + 2
= 100
Variance σ2 = 1/N2[∑fiyi – (∑fiyi)2]
= 1/(22)2[22×728 – 44 × 44]
= 1/22[728-88]
= 640/22
= 320/11
= 29.09
6. Find the mean and standard deviation using short-cut method.
xi | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
fi | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
?♂️Solution: Let the assumed mean A = 64. Here h = 1
We obtain the following table from the given data.
Let the assumed mean A = 64
and yi = xi – 64
Xi | Frequency fi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
60 | 2 | -4 | 16 | -8 | 32 |
61 | 1 | -3 | 9 | -3 | 9 |
62 | 12 | -2 | 4 | -24 | 48 |
63 | 29 | -1 | 1 | -29 | 29 |
64 | 25 | 0 | 0 | 0 | 0 |
65 | 12 | 1 | 1 | 12 | 12 |
66 | 10 | 2 | 4 | 20 | 40 |
67 | 4 | 3 | 9 | 12 | 36 |
68 | 5 | 4 | 16 | 20 | 80 |
0 | 286 |
Mean, x̅ = A + ∑fiyi/N
= 64 + 0
= 64
Then, variance,
σ2 = 1/N2[∑fiyi – (∑fiyi)2]
= 1/(100)2[100×286 – 0]
= 286/100
= √2.86
Therefore, Standard variance = 2.886
= 1.691
Mean = 64 and Standard variance = 1.691
7. Find the mean and variance for the following frequency distributions in Exercises 7 and 8.
Classes | 0 – 30 | 30 – 60 | 60 – 90 | 90 – 120 | 120 – 150 | 150 – 180 | 180 – 210 |
Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
?♂️Solution: Let us make the table of the given data and append other columns after calculations.
the assumed mean A = 105, class interval h = 30
yi = xi – A / h = xi – 10 /30
Classes | Frequency fi | Mid – pointsxi | fixi | (xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
0 – 30 | 2 | 15 | 30 | -92 | 8464 | 16928 |
30 – 60 | 3 | 45 | 135 | -62 | 3844 | 11532 |
60 – 90 | 5 | 75 | 375 | -32 | 1024 | 5120 |
90 – 120 | 10 | 105 | 1050 | -2 | 4 | 40 |
120 – 150 | 3 | 135 | 405 | 28 | 784 | 2352 |
150 – 180 | 5 | 165 | 825 | 58 | 3364 | 16820 |
180 – 210 | 2 | 195 | 390 | 88 | 7744 | 15488 |
N = 30 | 3210 | 68280 |
Mean x̅ = A + (∑fiyi/N) x h
= 105+2/30×30
= 107
Variance σ2= h2/h2[n ∑fiy2i – (∑fiyi)2]
= 30×30/30×30[30×76-22]
= 2280 − 4
= 2276
8.
Classes | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 –50 |
Frequencies | 5 | 8 | 15 | 16 | 6 |
?♂️Solution: Let us make the table of the given data and append other columns after calculations.
yi = xi – A / h = xi – 25 /10
Classes | Frequency fi | Mid – pointsxi | fixi | (xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
0 – 10 | 5 | 5 | 25 | -22 | 484 | 2420 |
10 – 20 | 8 | 15 | 120 | -12 | 144 | 1152 |
20 – 30 | 15 | 25 | 375 | -2 | 4 | 60 |
30 – 40 | 16 | 35 | 560 | 8 | 64 | 1024 |
40 –50 | 6 | 45 | 270 | 18 | 324 | 1944 |
N = 50 | 1350 | 6600 |
Mean x̅ = A + (∑fiyi/N) x h
= 25+(10/50)×10
= 25 + 2
= 27
Variance σ2= h2/h2[n ∑fiy2i – (∑fiyi)2]
= 100/2500[50×68-100]
= 50/25[68-2]
= 2 × 66
= 132
9. Find the mean, variance and standard deviation using short-cut method
Height in cms | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 | 90 – 95 | 95 – 100 | 100 – 105 | 105 – 110 | 110 – 115 |
Frequencies | 3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
?♂️Solution: Let the assumed mean, A = 92.5 and h = 5
Let us make the table of the given data and append other columns after calculations.
Height (class) | Number of children Frequency fi | MidpointXi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
70 – 75 | 3 | 72.5 | -4 | 16 | -12 | 48 |
75 – 80 | 4 | 77.5 | -3 | 9 | -12 | 36 |
80 – 85 | 7 | 82.5 | -2 | 4 | -14 | 28 |
85 – 90 | 7 | 87.5 | -1 | 1 | -7 | 7 |
90 – 95 | 15 | 92.5 | 0 | 0 | 0 | 0 |
95 – 100 | 9 | 97.5 | 1 | 1 | 9 | 9 |
100 – 105 | 6 | 102.5 | 2 | 4 | 12 | 24 |
105 – 110 | 6 | 107.5 | 3 | 9 | 18 | 54 |
110 – 115 | 3 | 112.5 | 4 | 16 | 12 | 48 |
N = 60 | 6 | 254 |
Mean, x̅ = A + (∑fiyi/N) x h
= 9.25+6/60×5
= 92.5 + 0.5
= 93
Variance,
σ2= h2/h2[n ∑fiy2i – (∑fiyi)2]
= 25/3600[60×254-36]
= 12/144[5×254-3]
= 112[1270-3]
= 1267/12
= 105.58
Standard Deviation, =
σ = √105.58
= 10.28
10. The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 – 36 | 37 – 40 | 41 – 44 | 45 – 48 | 49 – 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint first make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5 – 48.5, 48.5 – 52.5 and then proceed.]
?♂️Solution: Let the assumed mean, A = 42.5 and h = 4
Let us make the table of the given data and append other columns after calculations.
yi = xi – 42.5 /4
Height (class) | Number of children(Frequency fi) | MidpointXi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
32.5 – 36.5 | 15 | 34.5 | -2 | 4 | -30 | 60 |
36.5 – 40.5 | 17 | 38.5 | -1 | 1 | -17 | 17 |
40.5 – 44.5 | 21 | 42.5 | 0 | 0 | 0 | 0 |
44.5 – 48.5 | 22 | 46.5 | 1 | 1 | 22 | 22 |
48.5 – 52.5 | 25 | 50.5 | 2 | 4 | 50 | 100 |
N = 100 | 25 | 199 |
Mean, x̅ = A + (∑fiyi/N) x h
= 42.5+25100×4
= 42.5 + 1
= 43.5
Variance σ2= h2/h2[n ∑fiy2i – (∑fiyi)2]
= 16/(100)2[100×199-(25)2]
= 16×25/100×100[4×199-25]
= 1/25[796-25]
= 771/25
= 30.84
Standard Deviation σ = √30.48 = 5.56