NCERT Solutions Class 10th Maths Chapter 9 – Some Applications of Trigonometry
Textbook | NCERT |
class | 10th |
Subject | Mathematics |
Chapter | 9th |
Chapter Name | Some Applications of Trigonometry |
grade | Class 10th Mathematics |
Medium | English |
Source | last doubt |
NCERT Solutions Class 10th Maths Chapter – 9 Some Applications of Trigonometry Exercise – 9.1 were prepared by Experienced Lastdoubt.com Teachers. Detailed answers of all the questions in Chapter 9 Maths Class 10 Some Applications of Trigonometry Exercise 9.1 provided in NCERT Text Book.
NCERT Solutions Class 10th Maths Chapter 9 – Some Applications of Trigonometry
Chapter – 9
Some Applications of Trigonometry
Exercise 9.1
1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°. (see fig. 9.11) Solution: Length of the rope is 20 m and angle made by the rope with the ground level is 30°. Given: AC = 20 m and angle C = 30° To Find: Height of the pole Let AB be the vertical pole In right ΔABC, using sine formula sin 30° = AB/AC Using value of sin 30 degrees is ½, we have 1/2 = AB/20 AB = 20/2 AB = 10 Therefore, the height of the pole is 10 m. |
2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree. Solution: Using given instructions, draw a figure. Let AC be the broken part of the tree. Angle C = 30° |
3. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case? Solution: As per contractor’s plan,
|
4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower. Solution: Let AB be the height of the tower and C is the point elevation which is 30 m away from the foot of the tower. |
5. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string. Solution: Draw a figure, based on given instruction, |
6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building. Solution: Let the boy initially stand at point Y with inclination 30° and then he approaches the building to the point X with inclination 60°. |
7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. Solution: Let BC be the 20 m high building. |
8. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal. Solution: Let AB be the height of statue. |
9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building. Solution: Let CD be the height of the tower. AB be the height of the building. BC be the distance between the foot of the building and the tower. Elevation is 30 degree and 60 degree from the tower and the building respectively.
|
10. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles. Solution: Let AB and CD be the poles of equal height. O is the point between them from where the height of elevation taken. BD is the distance between the poles. |
11. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig. 9.12). Find the height of the tower and the width of the canal. Solution: Given, AB is the height of the tower. DC = 20 m (given) As per given diagram, In right ΔABD, tan 30° = AB/BD 1/√3 = AB/(20+BC) AB = (20+BC)/√3 … (i) Again, In right ΔABC, tan 60° = AB/BC √3 = AB/BC AB = √3 BC … (ii) From equation (i) and (ii) √3 BC = (20+BC)/√3 3 BC = 20 + BC 2 BC = 20 BC = 10 Putting the value of BC in equation (ii) AB = 10√3 This implies, the height of the tower is 10√3 m and the width of the canal is 10 m. |
12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower. Solution: Let AB be the building of height 7 m and EC be the height of the tower. |
13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships. Solution: Let AB be the lighthouse of height 75 m. Let C and D be the positions of the ships. To Find: CD = distance between two ships |
14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30° (see Fig. 9.13). Find the distance travelled by the balloon during the interval. Solution: Let the initial position of the balloon be A and final position be B. |
15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point. Solution: Let AB be the tower. |
16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m. Solution: Let AB be the tower. C and D be the two points with distance 4 m and 9 m from the base respectively. As per question, |
NCERT Solutions Class 10th Maths All Chapter
- Chapter 1 – Real Numbers
- Chapter 2 – Polynomials
- Chapter 3 – Pair of Linear Equations in Two Variables
- Chapter 4 – Quadratic Equations
- Chapter 5 – Arithmetic Progressions
- Chapter 6 – Triangles
- Chapter 7 – Coordinate Geometry
- Chapter 8 – Introduction to Trigonometry
- Chapter 9 – Applications of Trigonometry
- Chapter 10 – Circles
- Chapter 11 – Areas Related to Circles
- chapter 12 – Surface Areas and Volumes
- Chapter 13 – Statistics
- Chapter 14 – Probability
You Can Join Our Social Account
Youtube | Click here |
Click here | |
Click here | |
Click here | |
Click here | |
Telegram | Click here |
Website | Click here |