NCERT Solution Class 9th Maths Chapter – 4 Linear Equations in Two Variables
Textbook | NCERT |
Class | 9th |
Subject | Mathematics |
Chapter | 4th |
Chapter Name | Linear Equations in Two Variables |
Category | Class 9th Math Solutions |
Medium | English |
Source | Last Doubt |
NCERT Solution Class 9th Maths Chapter – 4 Linear Equations in Two Variables
Chapter – 4
Linear Equations in Two Variables
Examples
Example 1 Write each of the following equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case: (i) 2x + 3y = 4.37 (ii) x – 4 = √3 y (iii) 4 = 5x – 3y (iv) 2x = ySolution – (i) 2x + 3y = 4.37 can be written as 2x + 3y – 4.37 = 0. Here a = 2, b = 3 and c = – 4.37. (ii) The equation x – 4 = √3y can be written as x – √3y – 4 = 0. Here a = 1, b = – √3 and c = – 4. (iii) The equation 4 = 5x – 3y can be written as 5x – 3y – 4 = 0. Here a = 5, b = –3 and c = – 4. Do you agree that it can also be written as –5x + 3y + 4 = 0 ? In this case a = –5, b = 3 and c = 4.(iv) The equation 2x = y can be written as 2x – y + 0 = 0. Here a = 2, b = –1 and c = 0. Equations of the type ax + b = 0 are also examples of linear equations in two variables because they can be expressed as ax + 0.y + b = 0 For example, 4 – 3x = 0 can be written as –3x + 0.y + 4 = 0 |
Example 2 : Write each of the following as an equation in two variables: (i) x = –5 (ii) y = 2 (iii) 2x = 3 (iv) 5y = 2Solution – (i) x = –5 can be written as 1.x + 0.y = –5, or 1.x + 0.y + 5 = 0. (ii) y = 2 can be written as 0.x + 1.y = 2, or 0.x + 1.y – 2 = 0. (iii) 2x = 3 can be written as 2x + 0.y – 3 = 0. (iv) 5y = 2 can be written as 0.x + 5y – 2 = 0. |
Example 3 : Find four different solutions of the equation x + 2y = 6. Solution – By inspection, x = 2, y = 2 is a solution because for x = 2, y = 2 |
Example 4 : Find two solutions for each of the following equations: (i) 4x + 3y = 12 (ii) 2x + 5y = 0 (iii) 3y + 4 = 0Solution – (i) Taking x = 0, we get 3y = 12, i.e., y = 4. So, (0, 4) is a solution of the given equation. Similarly, by taking y = 0, we get x = 3. Thus, (3, 0) is also a solution (ii) Taking x = 0, we get 5y = 0, i.e., y = 0. So (0, 0) is a solution of the given equation. Now, if you take y = 0, you again get (0, 0) as a solution, which is the same as the earlier one. To get another solution, take x = 1, say. Then you can check that the |
You Can Join Our Social Account
Youtube | Click here |
Click here | |
Click here | |
Click here | |
Click here | |
Telegram | Click here |
Website | Click here |