NCERT Solutions Class 11th Maths Chapter – 3 Trigonometric Functions Exercise 3.3

NCERT Solutions Class 11th Maths Chapter – 3 Trigonometric Functions Exercise 3.3

TextbookNCERT
classClass – 11th
SubjectMathematics
ChapterChapter – 3
Chapter NameTrigonometric Functions
gradeClass 11th Maths solution 
Medium English
Sourcelast doubt

NCERT Solutions Class 11th Maths Chapter – 3 Trigonometric Functions Exercise 3.3

?Chapter – 3?

✍ Trigonometric Functions✍

?Exercise 3.3?

Prove that:

1.

‍♂️Solution:

 

Trigonometric Functions

2.

 

Trigonometric Functions

‍♂️Solution:

 

Trigonometric Functions

Here
= 1/2 + 4/4
= 1/2 + 1
= 3/2
= RHS

3.

 

Trigonometric Functions

‍♂️Solution:

 

Trigonometric Functions

4.

 

 

Trigonometric Functions

‍♂️Solution:

 

Trigonometric Functions

 

Trigonometric Functions

5. Find the value of:

(i) sin 75o
(ii) tan 15o

‍♂️Solution:

 

Trigonometric Functions

(ii) tan 15°
It can be written as
= tan (45° – 30°)
Using formula

Trigonometric Functions

 

Trigonometric Functions

Prove the following:

6.

 

Trigonometric Functions

Solution:

 

Trigonometric Functions

 

Trigonometric Functions

7.

Trigonometric Functions

‍♂️Solution:

 

Trigonometric Functions

 

Trigonometric Functions

8.

 

Trigonometric Functions

‍♂️Solution:

 

Trigonometric Functions

9.

 

Trigonometric Functions

‍♂️Solution: Consider

 

Trigonometric Functions

It can be written as
= sin x cos x (tan x + cot x)
So we get

 

Trigonometric Functions

10. sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

‍♂️Solution:

LHS = sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x

Trigonometric Functions

11.

 

Trigonometric Functions

‍♂️Solution: Consider

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 26

Using the formula

 

Trigonometric Functions

12. sin 2x – sin 2x = sin 2x sin 10 x

‍♂️Solution:Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 28

 

Trigonometric Functions

13. cos 2 2x – cos 2x = sin 4 sin 8 x

‍♂️Solution:Solution:

 

Trigonometric Functions

We get
= [2 cos 4 x cos (-2x)] [-2 sin 4 x sin (-2x)]
It can be written as
= [2 cos 4 x cos 2x] [–2 sin 4 x (–sin 2x)]
So we get
= (2 sin 4 x cos 4 x) (2 sin 2x cos 2x)
= sin 8 x sin 4 x
= RHS

14. sin 2x + 2 sin 4 x + sin 6 x = 4 cos 2 x sin 4 x

‍♂️Solution:Solution:

 

Trigonometric Functions

By further simplification
= 2 sin 4 x cos (– 2x) + 2 sin 4 x
It can be written as
= 2 sin 4 x cos 2x + 2 sin 4 x
Taking common terms
= 2 sin 4 x (cos 2 x + 1)
Using the formula
= 2 sin 4 x (2 cos 2 x – 1 + 1)
We get
= 2 sin 4 x (2 cos 2 x)
= 4 cos 2 x sin 4 x
= R.H.S.

15. cot 4 x (sin 5 x + sin 3 x) = cot x (sin 5 x – sin 3 x)

Solution: ‍♂️Solution: Consider

LHS = cot 4 x (sin 5 x + sin 3 x)

It can be written as

Trigonometric Functions

Using the formula

 

Trigonometric Functions

= 2 cos 4 x cos x

Hence, LHS = RHS.

16.

 

Trigonometric Functions

Solution: ‍♂️Solution: Consider

 

Trigonometric Functions

Using the formula

 

Trigonometric Functions

17.

 

Trigonometric Functions

‍♂️Solution:Solution:

 

Trigonometric Functions

 

Trigonometric Functions

18.

 

Trigonometric Functions

‍♂️Solution:Solution:

 

Trigonometric Functions

19.

 

Trigonometric Functions

‍♂️Solution:Solution:

 

Trigonometric Functions

20.

 

‍♂️Solution:Solution:

 

Trigonometric Functions

 

Trigonometric Functions

21.

 

‍♂️Solution:

Trigonometric Functions

 

Trigonometric Functions

 

 

22. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1

‍♂️Solution:

 

Trigonometric Functions

23.

 

Trigonometric Functions

‍♂️Solution: Consider

LHS = tan 4 x = tan 2(2x)

By using the formula

 

Trigonometric Functions

 

24. cos 4 x = 1 – 8 sin cos x

‍♂️Solution:

Trigonometric Functions

Consider
LHS = cos 4 x
We can write it as
= cos 2(2x)
Using the formula cos 2 A = 1 – 2 sin2 A
= 1 – 2 sin 2 2x
Again by using the formula sin 2 A = 2 sin A cos A
= 1 – 2(2 sin x cos x) 2
So we get
= 1 – 8 sin 2x cos 2x
= R.H.S.

25. cos 6 x = 32 cos 6 x – 48 cos 4 x + 18 cos 2 – 1

‍♂️Solution: Consider
L.H.S. = cos 6x
It can be written as
= cos 3(2x)
Using the formula cos 3A = 4 cos3 A – 3 cos A
= 4 cos3 2x – 3 cos 2x
Again by using formula cos 2x = 2 cos2 x – 1
= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1)
By further simplification
= 4 [(2 cos2 x) 3 – (1)3 – 3 (2 cos2 x) 2 + 3 (2 cos2 x)] – 6cos2 x + 3
We get
= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3
By multiplication
= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3
On further calculation
= 32 cos6x – 48 cos4x + 18 cos2x – 1
= R.H.S.