NCERT Solutions Class 9th Maths Chapter – 2 Polynomials Exercise – 2.4

NCERT Solutions Class 9th Maths Chapter – 2 Polynomials

TextbookNCERT
Class9th
SubjectMathematics
Chapter2nd
Chapter NamePolynomials
CategoryClass 9th Mathematics
Medium English
SourceLast Doubt

NCERT Solutions Class 9th Maths Chapter – 2 Polynomials Exercise – 2.4 In This Chapter We Will Learn About Polynomials, Remainder theorem, Factor theorem, Terms, Coefficient, Zero Polynomials, Monomials, Binomials, Trinomials, Linear polynomials, Quadratic polynomials, Cubic polynomials, Zero of the polynomials, By splitting the middle term, Algebraic identities with Class 9th Maths Chapter – 2 Polynomials Exercise – 2.4.

NCERT Solutions Class 9th Maths Chapter – 2 Polynomials

Chapter – 2

Polynomials

Exercise – 2.4

Question 1. Use suitable identities to find the following products:
(i) (x + 4) (x + 10)

Solution – We have, (x+ 4) (x + 10)
Using identity, (x+ a) (x+ b) = x2 + (a + b)x+ ab
We have, (x + 4) (x + 10)
= x2+(4 + 10) x + (4 x 10)
= x2 + 14x + 40

(ii) (x+8) (x -10)

Solution – We have, (x+ 8) (x -10)
Using identity, (x + a) (x + b) = x2 + (a + b)x + ab
We have, (x + 8) (x – 10)
= x2 + [8 + (-10)] x + (8) (- 10)
= x2 – 2x – 80

(iii) (3x + 4) (3x – 5)

Solution – We have, (3x + 4) (3x – 5)
Using identity, (x + a) (x + b) = x2 + (a + b) x + ab
We have, (3x + 4) (3x – 5)
= (3x)2 + (4 – 5) x + (4) (- 5)
= 9x2 – x – 20

(iv) (y2  3/2) (y2– 3/2)

Solution – We have, (y23/2) (y2– 3/2)
Using the identity, (x+y)(x–y) = x2–y 2
We get, (y+ 3/2) (y– 3/2)
= (y2)– (3/2)2
= y– 9/4

(v) (3 – 2x) (3 + 2x)

Solution – We have, (3 – 2x) (3 + 2x)
Using identity, (x + y) (x – y) = x2 – y2
(3 – 2x) (3 + 2x)
(3)2 – (2x)2
= 9 – 4x2

Question 2. Evaluate the following products without multiplying directly:
(i) 103 x 107

Solution – We have, 103 x 107
[Using (x + a)(x + b) = x2 + (a + b)x + ab]
= (100 + 3) (100 + 7)
= ( 100)2 + (3 + 7) (100) + (3 x 7)
= 10000 + (10) x 100 + 21
= 10000 + 1000 + 21
= 11021

(ii) 95 x 96

Solution – We have, 95 x 96
[Using (x + a)(x + b) = x2 + (a + b)x + ab]
= (100 – 5) (100 – 4)
= ( 100)2 + (- 5) + (- 4) 100 + (- 5) (- 4)
= 10000 – 500 – 400 + 20
= 10020 – 900
= 9120

(iii) 104 x 96

Solution – We have 104 x 96
[Using (a + b)(a -b) = a2– b2]
= (100 + 4) (100 – 4)
= (100)– 42
= 10000 – 16
= 9984

Question 3. Factorise the following using appropriate identities:
(i) 9x+ 6xy + y2

Solution – We have, 9x2 + 6xy + y2
[Using a2 + 2ab + b2 = (a + b)2]
= (3x)2 + 2(3x) (y) + (y)2

= (3x + y)2
= (3x + y) (3x + y)

(ii) 4y– 4y + 1

Solution – We have, 4y2 – 4y + 12
[Using a2 – 2ab + b2 = (a- b)2]
= (2y)2 + 2(2y)(1) + (1)2

= (2y -1)2
= (2y – 1) (2y – 1)

(iii) x2 – y100

Solution – We have, x– y2/100
[Using identity, x– y= (x – y) (x + y)]
= x2–y2/100
= x2–(y/10)2
= (x–y/10) (x+y/10)

Question 4. Expand each of the following, using suitable identity
(i) (x+2y+ 4z)2

Solution – We know that,
[Using identity, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx]
(x + 2y + 4z)2
= x2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz

(ii) (2x – y + z)2

Solution – (2x – y + z)2
= (2x)2 + (- y)2 + z2 + 2(2x)(- y) + 2(- y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4xz

(iii) (- 2x + 3y + 2z)2

Solution – (- 2x + 3y + 2z)2
= (- 2x)2 + (3y)2 + (2z)2 + 2(- 2x)(3y) + 2(3y)(2z) + 2(2z)(- 2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz

(iv) (3a -7b – c)z

Solution – (3a -7b- c)2
= (3a)2 + (- 7b)2 + (- c)2 + 2(3a)(- 7b) + 2(- 7b)(- c) + 2(- c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac

(v) (- 2x + 5y – 3z)2

Solution – (- 2x + 5y- 3z)2
= (- 2x)2 + (5y)2 + (- 3z)2 + 2(- 2x)(5y) + 2(5y)(- 3z) + 2(- 3z)(- 2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12xz

(vi) [1/4a –1/4b + 1] 2

Solution

NCERT Solutions Class 9th Maths Chapter - 2 Exercise - 2.5

Question 5. Factories:
(i) 4 x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz

Solution – 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (- 4z)2 + 2(2x)(3y) + 2(3y)(- 4z) + 2(- 4z)(2x)
= (2x + 3y – 4z)2
= (2x + 3y + 4z) (2x + 3y – 4z)

(ii) 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz

Solution – 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
= (- √2x)2 + (y)2 + (2 √2z)2y + 2(- √2x)(y) + 2(y) (2√2z) + 2(2√2z)(- √2x)
= (- √2x + y + 2 √2z)2
= (- √2x + y + 2 √2z) (- √2x + y + 2 √2z)

Question 6. Write the following cubes in expanded form:

(i) (2x+1)3

Solution – Using identity,(x+y)3 = x3+y3+3xy(x+y)
(2x+1)3
= (2x)3+13+(3×2x×1)(2x+1)
= 8x3+1+6x(2x+1)
= 8x3+12x2+6x+1

(ii) (2a−3b)3

Solution – Using identity,(x–y)3 = x3–y3–3xy(x–y)
(2a−3b)3
= (2a)3−(3b)3–(3×2a×3b)(2a–3b)
= 8a3–27b3–18ab(2a–3b)
= 8a3–27b3–36a2b+54ab2

(iii) ((3/2)x+1)3

Solution – Using identity,(x+y)3 = x3+y3+3xy(x+y)
((3/2)x+1)3
= ((3/2)x)+ 13+(3×(3/2)x×1) ((3/2)x +1)
= ((27/8)x)+ 1 + (9/2)x (3/2)x + 1)
=  ((27/8)x)+ 1 + (27/8)x)+ (9/2)x
= ((27/8)x)3 + (27/8)x)2 + (9/2)x + 1

(iv) (x−(2/3)y)3

Solution – Using identity, (x –y)3 = x3–y3–3xy(x–y)
(x−(2/3)y)3
= (x)– (2/3)y)– (3×x×2/3y) (x-2/3y)
= (x)– (8/27)y)– 2xy (x-2/3y)
= (x)– (8/27)y)– 2x2y + 4/3xy2

Question 7. Evaluate the following using suitable identities:
(i) (99)3

Solution – We have, 99 = (100 -1)
= 993 = (100 – 1)3 [Using (a – b)3 = a– b3 – 3ab (a – b)]
= (100)3 – 13 – 3(100)(1)(100 -1)
= 1000000 – 1 – 300(100 – 1)
= 1000000 -1 – 30000 + 300
= 1000300 – 30001
= 970299

(ii) (102)3

Solution – We have, 102 =100 + 2
= 1023 = (100 + 2)[Using (a + b)3 = a3 + b3 + 3ab (a + b)]
= (100)3 + (2)3 + 3(100)(2)(100 + 2)
= 1000000 + 8 + 600(100 + 2)
= 1000000 + 8 + 60000 + 1200
= 1061208

(iii) (998)3

Solution – We have, 998 = 1000 – 2
= (998)3 = (1000-2)[Using (a – b)3 = a3 – b3 – 3ab (a – b)]
= (1000)3– (2)3 – 3(1000)(2)(1000 – 2)
= 1000000000 – 8 – 6000(1000 – 2)
= 1000000000 – 8 – 6000000 + 12000
= 994011992

Question 8.Factorise each of the following:
(i) 8a3 +b3 + 12a2b+6ab2

Solution – 8a3 +b3 +12a2b+6ab2
= (2a)3 + (b)3 + 6ab(2a + b)
= (2a)3 + (b)3 + 3(2a)(b)(2a + b)
= (2 a + b)3
[Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (2a + b)(2a + b)(2a + b)

(ii) 8a3 -b3-12a2b+6ab2

Solution – 8a3 – b3 – 12o2b + 6ab2
= (2a)3 – (b)3 – 3(2a)(b)(2a – b)
= (2a – b)3
[Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (2a – b) (2a – b) (2a – b)

(iii) 27-125a3 -135a+225a2

Solution – 27 – 125a3 – 135a + 225a2
= (3)3 – (5a)3 – 3(3)(5a)(3 – 5a)
= (3 – 5a)3
[Using a3 + b3 + 3 ab(a + b) = (a + b)3]
= (3 – 5a) (3 – 5a) (3 – 5a)

(iv) 64a3 -27b3 -144a2b + 108ab2

Solution – 64a3 -27b3 -144a2b + 108ab2
= (4a)3 – (3b)3 – 3(4a)(3b)(4a – 3b)
= (4a – 3b)3
[Using a3 – b3 – 3 ab(a – b) = (a – b)3]
= (4a – 3b)(4a – 3b)(4a – 3b)

(v) 27p3–(1/216)−(9/2) p2+(1/4)p

Solution – The expression, 27p3–(1/216)−(9/2) p2+(1/4)p can be written as
(3p)3–(1/6)3−(9/2) p2+(1/4)p = (3p)3–(1/6)3−3(3p)(1/6)(3p – 1/6)
Using (x – y)3 = x3 – y3 – 3xy (x – y)
27p3–(1/216)−(9/2) p2+(1/4)p = (3p)3–(1/6)3−3(3p)(1/6)(3p – 1/6)
Taking x = 3p and y = 1/6
= (3p–1/6)3
= (3p–1/6)(3p–1/6)(3p–1/6)

Question 9. Verify
(i) x3 + y3 = (x + y)-(x2 – xy + y2)

Solution – (x + y)3 = x3 + y3 + 3xy(x + y)
⇒ (x + y)3 – 3(x + y)(xy) = x3 + y3
⇒ (x + y)[(x + y)2-3xy] = x3 + y3
⇒ (x + y)(x2 + y2 – xy) = x3 + y3
Hence, verified.

(ii) x3 – y3 = (x – y) (x2 + xy + y2)

Solution – (x – y)3 = x3 – y3 – 3xy(x – y)
⇒ (x – y)3 + 3xy(x – y) = x3 – y3
⇒ (x – y)[(x – y)2 + 3xy)] = x3 – y3
⇒ (x – y)(x2 + y2 + xy) = x3 – y3
Hence, verified.

Question 10. Factorise each of the following:
(i) 27y3 + 125z3
[Hint: See question 9.]

Solution – We know that,
x3 + y3 = (x + y)(x2 – xy + y2)
We have, 27y3 + 125z3
= (3y)3 + (5z)3
= (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 – 15yz + 25z2)

(ii) 64m3 – 343n3

Solution – We know that,
x3 – y3 = (x – y)(x2 + xy + y2)
We have, 64m3 – 343n3
= (4m)3 – (7n)3
= (4m – 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)(16m2 + 28mn + 49n2)

Question 11. Factories: 27x3 +y3 +z3 -9xyz

Solution – We know that,
Using the identity, x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
We have, 27x3 + y3 + z3 – 9xyz

= (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z)[(3x)3 + y3 + z3 – (3x × y) – (y × 2) – (z × 3x)]
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3zx)

Question 12. Verify that x3 +y3 +z3 – 3xyz = 1/2 (x + y+z)[(x-y)2 + (y – z)2 +(z – x)2]

Solution – R.H.S
1/2(x + y + z)[(x – y)2+(y – z)2+(z – x)2]
1/2 (x + y + 2)[(x2 + y2 – 2xy) + (y2 + z2 – 2yz) + (z2 + x2 – 2zx)]
1/2 (x + y + 2)(x2 + y2 + y2 + z2 + z2 + x2 – 2xy – 2yz – 2zx)
1/2 (x + y + z)[2(x2 + y2 + z2 – xy – yz – zx)]
= 2 x 1/2 x (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= (x + y + z)(x2 + y2 + z2 – xy – yz – zx)
= x3 + y3 + z3 – 3xyz = L.H.S.
Hence, verified.

Question 13. If x + y + z = 0, show that x3 + y3 + z3 = 3 xyz.

Solution – Since, x + y + z = 0
⇒ x + y = -z (x + y)3 = (-z)3
⇒ x3 + y3 + 3xy(x + y) = -z3
⇒ x3 + y3 + 3xy(-z) = -z3 [∵ x + y = -z]
⇒ x3 + y3 – 3xyz = -z3
⇒ x3 + y3 + z3 = 3xyz
Hence, if x + y + z = 0, then
x3 + y3 + z3 = 3xyz

Question 14. Without actually calculating the cubes, find the value of each of the following:
(i) (- 12)3 + (7)3 + (5)3

Solution – We have, (-12)3 + (7)3 + (5)3
Let x = -12, y = 7 and z = 5.
We know that if x + y + z = 0, then, x3 + y3 + z3 = 3xyz
∴ (-12)3 + (7)3 + (5)3
= 3[(-12)(7)(5)]
= 3[-420]
= -1260

(ii) (28)3 + (- 15)3 + (- 13)3

Solution – We have, (28)3 + (-15)3 + (-13)3
Then, x + y + z = 28 – 15 – 13 = 0
We know that if x + y + z = 0, then x3 + y3 + z3 = 3xyz
∴ (28)3 + (-15)3 + (-13)3
= 3(28)(-15)(-13)
= 3(5460)
= 16380

Question 15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area: 25a2 – 35a + 12

Solution – Area of a rectangle = (Length) x (Breadth)
We have, 25a2 – 35a + 12
= 25a2 – 20a – 15a + 12
= 5a(5a – 4) – 3(5a – 4)
= (5a – 4)(5a – 3)
Thus, the possible length and breadth are (5a – 3) and (5a – 4).

(ii) Area: 35y2 + 13y – 12

Solution – We have, 35y2+ 13y -12
= 35y2 + 28y – 15y -12
= 7y(5y + 4) – 3(5y + 4)
= (5 y + 4)(7y – 3)
Thus, the possible length and breadth are (7y – 3) and (5y + 4).

Question 16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume 3x2 – 12x

Solution – Volume of a cuboid = (Length) × (Breadth) × (Height)
We have, 3x2 – 12x = 3(x2 – 4x)
= 3 x x x (x – 4)
∴ The possible dimensions of the cuboid are 3, x and (x – 4).

(ii) Volume 12ky2 + 8ky – 20k

Solution – We have, 12ky2 + 8ky – 20k
= 4[3ky2 + 2ky – 5k] = 4[k(3y2 + 2y – 5)]
= 4 x k x (3y2 + 2y – 5)
= 4k[3y2 – 3y + 5y – 5]
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5) x (y – 1)]
= 4k x (3y + 5) x (y – 1)
Thus, the possible dimensions of the cuboid are 4k, (3y + 5) and (y -1).

You Can Join Our Social Account

YoutubeClick here
FacebookClick here
InstagramClick here
TwitterClick here
LinkedinClick here
TelegramClick here
WebsiteClick here