NCERT Solution Class 8th Maths Chapter – 8 Algebraic Expressions and Identities Exercise 8.3

NCERT Solution Class 8th Maths Chapter – 8 Algebraic Expressions and Identities

TextbookNCERT
Class8th
SubjectMathematics
Chapter8th
Chapter NameAlgebraic Expressions and Identities
CategoryClass 8th Maths
Medium English
SourceLast Doubt

NCERT Solution Class 8th Maths Chapter – 8 Algebraic Expressions and Identities

Chapter – 8

Algebraic Expressions and Identities

Exercise 8.3

1. Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r
(ii) ab, a − b
(iii) a2 + b, 7a2b2
(iv) a2 − 9, 4a
(v) pq + qr + rp, 0

Solution:

 (i) 4p(q + r) = 4pq + 4pr
(ii) ab(a – b) = a2b – ab2
(iii) (a + b) (7a2b2) = 7a3b2 + 7a2b3
(iv) (a2 – 9 )(4a) = 4a3 – 36a
(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )

2. Complete the table.

First expressionSecond expressionProduct
(i)ab + c + d______
(ii)x + y – 55xy______
(iii)p6p– 7p + 5______
(iv)4 pq2P– q2______
(v)a + b + cabc______

Solution: 

First expressionSecond expressionProduct
(i)ab + c + da(b + c + d) = a × b + a × c + a × d

= ab + ac + ad

(ii)x + y – 55xyp(6p2– 7p + 5) = p × 6p2 – p × 7p + p × 5

= 6p3 − 7p2 + 5p

(iii)p6p– 7p + 5p (6 p 2-7 p +5)= p× 6 p– p× 7 p + p×5

= 6 p– 7 p+ 5 p

(iv)4p2q2P– q24p2q2(p2 – q2)

= 4p4q2 − 4p2q4

(v)a + b + cabc

abc(a + b + c ) = abc × a + abc × b + abc × c

= a2bc + ab2c + abc2

3. Find the product.

(i) (a2) × (2a22) × (4a26)

Solution:
(i) a2 x (2a22) x (4a26)
= (2 × 4) (a2 × a22 × a26)
= 8 × a2 + 22 + 26
= 8a50

(ii) (2/3xy) × (-9/10x2y2)

Solution:
(ii) (2/3xy) × (-9/10x2y2)
=(2/3 × -9/10 ) ( x × x2 × y × y2 )
= -3/5x3y3

(iii) (-10/3pq3/) × (6/5p3q)

Solution:
(iii) (-10/3pq3) × (6/5p3q)
= ( -10/3 × 6/5 ) (p × p3× q3 × q)
= -4p4q4

(iv) (x) × (x2) × (x3) × (x4)

Solution:
(iv) ( x) × (x2) × (x3) × (x4)
= x1 + 2 + 3 + 4
= x10

4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2

Solution:

(a) 3x(4x – 5) + 3
= 3x(4x) – 3x(5) + 3
=12x2 – 15x + 3

(i) Putting x = 3 in the equation we gets
= 12x2 – 15x + 3
= 12(32) – 15(3) +3
= 108 – 45 + 3
= 66

(ii) Putting x = 1/2 in the equation we get
12x2 – 15x + 3
= 12(1/2)2 – 15(1/2) + 3
= 12(1/4) – 15/2 + 3
= 3 – 15/2 + 3
= 6 – 15/2
= (12 – 15 )/2
= -3/2

(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1

Solution:
(b) a(a2 + a + 1) + 5 = (a × a2 + a × a + a × 1) + 5 = a+ a+ a + 5

(i) putting a = 0 in the equation we get
= 03 + 02 + 0 + 5 = 5
= 5

(ii) putting a=1 in the equation we get
= 13 + 12 + 1 + 5
= 1 + 1 + 1 + 5
= 8

(iii) Putting a = -1 in the equation we get
= (-1)3 + (-1)2 + (-1) + 5
= -1 + 1 – 1 + 5
= 4

5. (a) Add: p(p – q), q (q – r) and r ( r – p)

Solution:
(a) p(p – q) + q(q – r) + r( r – p)
= (p2 – pq) + (q2 – qr) + (r2 – pr)
= p2 + q2 + r2 – pq – qr – pr

(b) Add: 2x(z – x – y) and 2y(z – y – x)

Solution:
(b) 2x(z – x – y) + 2y(z – y – x)
= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)
= 2xz – 4xy + 2yz – 2x2 – 2y2

(c) Subtract: 3l(l – 4m + 5n) from 4l(10n – 3m + 2l )

Solution:
(c) 4l(10n – 3m + 2l ) – 3l(l – 4m + 5n)
= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)
= 40ln – 12lm + 8l2 – 3l2 + 12lm -15ln
= 5l2 + 25ln  

(d) Subtract: 3a(a + b + c ) – 2b(a – b + c) from 4c(– a + b + c )

Solution:
(d) 4c(– a + b + c ) – (3a(a + b + c ) – 2b(a – b + c))
= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))
=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)
= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac + 2ab – 2b2 + 2bc
= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2

You Can Join Our Social Account

YoutubeClick here
FacebookClick here
InstagramClick here
TwitterClick here
LinkedinClick here
TelegramClick here
WebsiteClick here